Context and Domain Knowledge Enhanced Entity Spotting in Informal Text
نویسندگان
چکیده
This paper explores the application of restricted relationship graphs (RDF) and statistical NLP techniques to improve named entity annotation in challenging Informal English domains. We validate our approach using on-line forums discussing popular music. Named entity annotation is particularly difficult in this domain because it is characterized by a large number of ambiguous entities, such as the Madonna album “Music” or Lilly Allen’s pop hit “Smile”. We evaluate improvements in annotation accuracy that can be obtained by restricting the set of possible entities using real-world constraints. We find that constrained domain entity extraction raises the annotation accuracy significantly, making an infeasible task practical. We then show that we can further improve annotation accuracy by over 50% by applying SVM based NLP systems trained on word-usages in this domain.
منابع مشابه
Presenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملContext-enhanced Adaptive Entity Linking
More and more knowledge bases are publicly available as linked data. Since these knowledge bases contain structured descriptions of real-world entities, they can be exploited by entity linking systems that anchor entity mentions from text to the most relevant resources describing those entities. In this paper, we investigate adaptation of the entity linking task using contextual knowledge. The ...
متن کاملAn Optimal Approach to Local and Global Text Coherence Evaluation Combining Entity-based, Graph-based and Entropy-based Approaches
Text coherence evaluation becomes a vital and lovely task in Natural Language Processing subfields, such as text summarization, question answering, text generation and machine translation. Existing methods like entity-based and graph-based models are engaging with nouns and noun phrases change role in sequential sentences within short part of a text. They even have limitations in global coheren...
متن کاملPhoneme Based Acoustics Keyword Spotting in Informal Continuous Speech
This paper describes several ways of keywords spotting (KWS), based on Gaussian mixture (GM) hidden Markov modelling (HMM). Context-independent and dependent phoneme models are used in our system. The system was trained and evaluated on informal continuous speech. We used different complexities of KWS recognition networks and different types of phoneme models. The impact of these parameters on ...
متن کامل